83 research outputs found

    On the Subgrid-Scale Modeling of Compressible Turbulence

    Get PDF
    A new sub-grid scale model is presented for the large-eddy simulation of compressible turbulence. In the proposed model, compressibility contributions have been incorporated in the sub-grid scale eddy viscosity which, in the incompressible limit, reduce to a form originally proposed by Smagorinsky (1963). The model has been tested against a simple extension of the traditional Smagorinsky eddy viscosity model using simulations of decaying, compressible homogeneous turbulence. Simulation results show that the proposed model provides greater dissipation of the compressive modes of the resolved-scale velocity field than does the Smagorinsky eddy viscosity model. For an initial r.m.s. turbulence Mach number of 1.0, simulations performed using the Smagorinsky model become physically unrealizable (i.e., negative energies) because of the inability of the model to sufficiently dissipate fluctuations due to resolved scale velocity dilations. The proposed model is able to provide the necessary dissipation of this energy and maintain the realizability of the flow. Following Zeman (1990), turbulent shocklets are considered to dissipate energy independent of the Kolmogorov energy cascade. A possible parameterization of dissipation by turbulent shocklets for Large-Eddy Simulation is also presented

    Progress in modeling hypersonic turbulent boundary layers

    Get PDF
    A good knowledge of the turbulence structure, wall heat transfer, and friction in turbulent boundary layers (TBL) at high speeds is required for the design of hypersonic air breathing airplanes and reentry space vehicles. This work reports on recent progress in the modeling of high speed TBL flows. The specific research goal described here is the development of a second order closure model for zero pressure gradient TBL's for the range of Mach numbers up to hypersonic speeds with arbitrary wall cooling requirements

    Notes on rotating turbulence

    Get PDF
    This work investigates the turbulent constitutive relation when turbulence is subjected to solid body rotation. Laws regarding spectra and asymptotic decay of rotating homogeneous turbulence were confirmed through large-eddy simulation (LES) computations. Rotating turbulent flows exist in many industrial, geophysical, and astrophysical applications. From Lagrangian analysis a relation between turbulent stress and strain in rotating homogeneous turbulence was inferred. This relation was used to derive the spectral energy flux and, ultimately, the energy spectrum form. If the rotation wavenumber k(sub Omega) lies in the inertial subrange, then for wavenumbers less than k(sub Omega) the turbulence motions are affected by rotation and the energy spectrum slope is modified. Energy decay laws inferred in other reports and the present results suggest a modification of the epsilon model equation and eddy viscosity in k-epsilon models

    Modeling salt-fingering structures

    Get PDF
    Results are presented of calculations with a second-order turbulence model which has been modified to evolve continuously from full turbulent convection to thermo-haline convection, under appropriate circumstances. A three-layer system is simulated, with a salt-fingering interface between two convectively-driven turbulent layers. Experimental results on the salt/heat flux ratio are reproduced

    Implementation of a simulation model for a simplified DiffServ-MIB database

    Get PDF
    Cílem této práce je navrhnout možné postupy pro simulaci chování protokolu SNMP (Simple Network Management Protocol) v simulačním prostředí OPNET Modeler. Práce podrobně popisuje jednotlivé postupy řešení, které byly vybrány pro tuto simulaci. Součástí práce je také stručný úvod do problematiky simulačního prostředí OPNET Modeler a dále také nezbytný popis protokolu SNMP, modelu DiffServ a databáze DiffServ MIB. Hlavní část práce představuje podrobný popis naprogramovaných mechanismů pro modelování funkcí protokolu SNMP a to včetně popisu zdrojových kódů, které byly v simulačním modelu použity. Jedná se především o implementaci funkce pro získávání hodnot z atributů modelu na různých úrovních hierarchické struktury, dále vytvoření paketu s dynamicky nastavitelnou velikostí uživatelských dat, implementaci zjednodušené databáze DiffServ MIB a v neposlední řadě vytvoření statistik protokolu SNMP. Jednotlivé zdrojové kódy jsou popsány tak, aby jim porozuměl i čtenář se základními znalostmi simulačního prostředí OPNET Modeler.The aim of this work is to propose feasible solution for the simulation of the SNMP (Simple Network Management Protocol) protocol in the OPNET Modeler simulation environment. This work describes in detail individual procedures, which were chosen for this simulation . The work also contains an introduction to the OPNET Modeler simulation environment, the SNMP protocol, the DiffServ model and the DiffServ-MIB database. The main part of this work describes the algorithms programmed to model the functions of the SNMP protocol. Source codes of the algorithms programmed are included as well. The work deals especially with the functions for obtaining values from different levels of a multilevel model attributes, packet creation functions with dynamically changing length of user-data field, for the implementation process of a simplified DiffServ MIB database and with the functions for statistic creation.

    Characterisation of contact twinning for cerussite, PbCO3, by single-crystal NMR spectroscopy

    Get PDF
    <jats:title>Abstract</jats:title><jats:p>Cerussite, <jats:inline-formula><jats:alternatives><jats:tex-math>hboxPbCO3\\hbox {PbCO}_3</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mtext>PbCO</mml:mtext> <mml:mn>3</mml:mn> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula>, like all members of the aragonite group, shows a tendency to form twins, due to high pseudo-symmetry within the crystal structure. We here demonstrate that the twin law of a cerussite contact twin may be established using only <jats:inline-formula><jats:alternatives><jats:tex-math>207^{207}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow /> <mml:mn>207</mml:mn> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>Pb-NMR spectroscopy. This is achieved by a global fit of several sets of orientation-dependent spectra acquired from the twin specimen, allowing to determine the relative orientation of the twin domains. Also, the full <jats:inline-formula><jats:alternatives><jats:tex-math>207^{207}</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow /> <mml:mn>207</mml:mn> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>Pb chemical shift tensor in cerussite at room temperature is determined from these data, with the eigenvalues being <jats:inline-formula><jats:alternatives><jats:tex-math>delta11=(2315pm1)\\delta _{11} = (-2315\\pm 1)</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>δ</mml:mi> <mml:mn>11</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>-</mml:mo> <mml:mn>2315</mml:mn> <mml:mo>±</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> ppm, <jats:inline-formula><jats:alternatives><jats:tex-math>delta22=(2492pm3)\\delta _{22} = (-2492 \\pm 3)</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>δ</mml:mi> <mml:mn>22</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>-</mml:mo> <mml:mn>2492</mml:mn> <mml:mo>±</mml:mo> <mml:mn>3</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> ppm, and <jats:inline-formula><jats:alternatives><jats:tex-math>delta33=(3071pm3)\\delta _{33} = (-3071 \\pm 3)</jats:tex-math><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>δ</mml:mi> <mml:mn>33</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>-</mml:mo> <mml:mn>3071</mml:mn> <mml:mo>±</mml:mo> <mml:mn>3</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> ppm.</jats:p&gt

    Local Electronic Structure in AlN Studied by Single-Crystal ²⁷Al and ¹⁴N NMR and DFT Calculations

    Get PDF
    Both the chemical shift and quadrupole coupling tensors for 14 N and 27 Al in the wurtzite structure of aluminum nitride have been determined to high precision by single-crystal NMR spectroscopy. A homoepitaxially grown AlN single crystal with known morphology was used, which allowed for optical alignment of the crystal on the goniometer axis. From the analysis of the rotation patterns of 14 N ( I=1 ) and 27 Al ( I=5/2 ), the quadrupolar coupling constants were determined to χ(14N)=(8.19±0.02) kHz, and χ(27Al)=(1.914±0.001) MHz. The chemical shift parameters obtained from the data fit were δiso=−(292.6±0.6) ppm and δΔ=−(1.9±1.1) ppm for 14 N, and (after correcting for the second-order quadrupolar shift) δiso=(113.6±0.3) ppm and δΔ=(12.7±0.6) ppm for 27 Al. DFT calculations of the NMR parameters for non-optimized crystal geometries of AlN generally did not match the experimental values, whereas optimized geometries came close for 27 Al with χ¯¯calc=(1.791±0.003) MHz, but not for 14 N with χ¯¯calc=−(19.5±3.3) kHz

    Mitschrift der Vorlesungen von [Johann Zeman, Otto Johannsen und Carl Häussermann] durch [Ludwig Kieninger] 1897-1900

    Get PDF
    MITSCHRIFT DER VORLESUNGEN VON [JOHANN ZEMAN, OTTO JOHANNSEN UND CARL HÄUSSERMANN] DURCH [LUDWIG KIENINGER] 1897-1900 Mitschriften und Skripte von Vorlesungen an der Technischen Hochschule und Universität Stuttgart (-) Mitschrift der Vorlesungen von [Johann Zeman, Otto Johannsen und Carl Häussermann] durch [Ludwig Kieninger] 1897-1900 (Bd. 36, 1897-1900) (3) Einband (-) Weberei von [Johann Zeman]. Wintersemester 1897/88 (2) Papierfabrikation von [Johann Zeman]. [1898 - 1900] (31) Appretur und Veredelung von [Otto Johannsen] (87) Fabrikanlagen der Textilindustrie von [Otto Johannsen] (118) Eisenhüttenkunde von [Johann Zeman]. Wintersemester 1897/98 (174) Chemische Technologie von [Carl Häussermann] (231) Abbildungen ([331]) Farbinformation (-) Einband (-
    corecore